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Background

Federated learning enables collaborative training
on edge devices while keeping sensitive personal
data local to the participants |2|. However, fed-
erated learning techniques can potentially leak
information via the gradients present in shared
models [3|. Such privacy leakage can have serious
security and privacy implications.
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Figure 1:Simplified diagrammatic drawing of ARM Trust-

Zone architecture

Leveraging the Trusted Execution Environ-
ment (TEE) implementation in ARM TrustZone
(Figure 1), we focus on conducting private fed-
crated learning for edge computing without com-
promising accuracy and efficiency:.

Proposed Framework

Partitioned Model Training

We present our framework that separates layers
5] and trains parts of the model in the TrustZone
to prevent privacy leakage (Figure 2).
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Figure 2:A partitioned DNN model in the TrustZone

Enhanced tech-

niques

privacy-preserving

o Data-oblivious trusted models 4]
To defend side-channel attacks that listen at
access patterns (e.g. following pseudo-code in
ReLLU activation) at layers in a DNN.
if(input < 0) then:
input = 0;

o Differential privacy-SGD |1
To obfuscate parameters and to guarantee
privacy in untrusted parts.
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Federated Learning with TEE

As an example, Figure 3 shows the flow of
model parameters during the training phase of
Federated Learning.
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Figure 3:The transter of model parameters during the par-

titioned federated learning

Experiment

o MNIST and CIFAR-10 as the data sets

e Open Portable TEFE, based on TrustZone, as
the implementation

o Darknet, written in plain C language, as the
DNN framework

o A Raspberry Pi 3 Model B as the setup

o Le-net for MNIST and a Small-net model for
CIFAR-10 (Figure 4)
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Figure 4:Partition of the Le-net model of MNIST and the
Small-net model of CIFAR-10
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Results

Overall, partitioning models does not signifi-
cantly influence CPU usage (Figure 5). One
exception is putting the maximum number of lay-
ers in 1rustZone.

Partitioning models also slightly leads to a de-
crease of the CPU usage in the user mode, though
consequently, it increases the CPU usage in the
kernel mode.
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Figure 5:Execution time for partitioning models of MNIST
(top two figures) and CIFAR-10 (bottom two fig-

ures)

The total cost of computation does not signifi-
cantly increase (Figure 6).
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Figure 6:Memory usage and power consumption for parti-
tioning models of MNIST (top two figures) and CIFAR-
10 (bottom two figures)
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